WEIGHTED BMOcjJ SPACES AND THE HILBERT TRANSFORM

نویسنده

  • Marcela Morvidone
چکیده

We obtain estimates for the distribution of values of functions Íll the weighted BMOq, spaces, BMO�(R), that let us find equivalent norms. It is also obtained that a suitable redefinition of the HilbeÍt transform is a bounded operator from these spaces into themselves. This is achieved for a certain cIass of weights w.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

Supercyclic tuples of the adjoint weighted composition operators on Hilbert spaces

We give some sufficient conditions under which the tuple of the adjoint of weighted composition operators $(C_{omega_1,varphi_1}^*‎ , ‎C_{omega_2,varphi_2}^*)$ on the Hilbert space $mathcal{H}$ of analytic functions is supercyclic‎.

متن کامل

Weighted Norm Inequalities for Hilbert Transforms and Conjugate Functions of Even and Odd Functions1

It is well known that the Hilbert tranformation and the conjugate function operator restricted to even (odd) functions define bounded linear operators on weighted If spaces under more general conditions than is the case for the unrestricted operators. In analogy with recent results of Hunt, Muckenhoupt and Wheeden for the Hilbert transform and the conjugate function operator, we obtain necessar...

متن کامل

Tractability of L2-approximation in hybrid function spaces

We consider multivariate L2-approximation in reproducing kernel Hilbert spaces which are tensor products of weighted Walsh spaces and weighted Korobov spaces. We study the minimal worst-case error eL2−app,Λ(N, d) of all algorithms that use N information evaluations from the class Λ in the d-dimensional case. The two classes Λ considered in this paper are the class Λall consisting of all linear ...

متن کامل

On Weak and Strong Sharp Weighted Estimates of Square Function

We reduce here end-point estimates for one singular operator (namely for dyadic square function) to Monge–Ampère equations with drift. The spaces are weighted spaces, and therefore the domain, where we solve our PDE is non-convex. If we are in the end-point situation our goal is either to find a logarithmic blow-up of the norm estimate from below, or to prove that there is upper estimate of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013